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web directories
(manually edited)

classification engines 
(automated)

[Yan04, Qi09, Bru20] 



Why does the quality of these services matter?
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› End users: incorrect categories affect reliability
over/underblocking in content filtering

› Academia: domain sample or results depend on them
2019 top conferences: 24 papers

lack of trust → resort to manual classification

[Res04, Ric02, Sch18, LeP19, Ahm20, Zeb20] 



Services are opaque on how they operate

Validation?     Training set?    Comprehensiveness?
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Label gathering
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Service choice affects which domains are labeled

› Coverage 
ranges from <1% to 94%

is better for automated classification services

16

0

20

40

60

80

100

Webse
nse

Alex
a

Tre
nd M

icr
o

Dr.W
eb

OpenDNS

BitD
efender

Fo
rce

point

Fo
rti

gu
ard

McA
fee

4.4M

Updates



Service choice affects which domains are labeled

› Coverage 
ranges from <1% to 94%

is better for automated classification services

› Popular domains have better coverage

› Subdomain coverage ranges from <1% to 99%

› Inconsistent when directly sourced 

or through VirusTotal
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Service choice affects the taxonomy granularity

› Security/content filtering: fewer categories 
As low as 12

Easier setup

› Marketing: more categories
Up to 7.5k

Fine-grained targeting
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Service choice affects label interpretation

› Inconsistencies between documented 

      and observed labels

› Multiple labels are uncommon

› Subdomains inherit labels from parent

› 3 out of 9 services updated labels 
Mostly for maliciousness
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Service choice affects label distribution

› Disagreement  

         on distribution of labels over domains
As measured through mutual information

› Uneven distribution of labels over domains
As measured through label frequency
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Dynamics of human labeling may trigger biases

Participation concentrated

› at beginning of project
outdated labels?

› with few users
lack of peer review?

› on unlabeled domains
stale labels?
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Disagreement in human labeling may trigger biases

› Label assignment is not completely objective
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Disagreement in human labeling may trigger biases

› Label assignment is not completely objective

› Empirically: Clusters of correlated labels
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Disagreement in human labeling may trigger biases

› Label assignment is not completely objective

› Empirically: Clusters of correlated labels

› Experimentally: 35.5% disagreement among authors,

71% matches community label
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We analyze services on specialized use cases

› Intended usage → requirements → data source selection
› Service selection → characteristics → coverage/accuracy

› Estimate suitability for three case studies
Obtain a manually curated list as “ground truth”

Analyze coverage across domains

Analyze appropriateness of labels
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Behavior differs widely for specialized use cases

› Advertising and tracking
Curated list: EasyList/EasyPrivacy
Finding: few services label the domains at all, let alone as tracker

› Adult content
Curated list: [Val19] and gambling regulators
Finding: 5 services label correctly, 3 others hardly label any

› CDNs/hosting providers
Curated list: signatures from WebPageTest
Finding: confusion between service function and content
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Recommendations

› We avoid recommending a specific service
“Best” service depends on use case and requirements

We cannot measure semantic agreement nor correctness

› Our recommendations address best practices

32 [Seb16, Lee13, Wei19] 



Recommendations

› Coverage and accuracy may be insufficient
Very service- and use case-dependent
Consider impact of errors

› Purpose and updates may introduce biases
Consult documentation for taxonomy and label sources
... but verify (and report) manually, as inconsistencies exist

› Taxonomies differ in size, scope and semantics
Sound aggregation is not obvious 
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