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ABSTRACT
Fitness tracking social networks such as Strava allow users to record

sports activities and share them publicly. Sharing encourages peer

interaction but also constitutes a risk, because an activity’s start or

finish may inadvertently reveal privacy-sensitive locations such as

a home or workplace. To mitigate this risk, networks introduced

endpoint privacy zones (EPZs), which hide track portions around

protected locations. In this paper, we show that EPZ implemen-

tations of major services remain vulnerable to inference attacks

that significantly reduce the effective anonymity provided by the

EPZ, and even reveal the protected location. Our attack leverages

distance information leaked in activity metadata, street grid data,

and the locations of the entry points into the EPZ. This yields a con-

strained search space where we use regression analysis to predict

protected locations. Our evaluation on 1.4 million Strava activities

shows that our attack discovers the protected location for up to

85% of EPZs. Larger EPZs reduce the performance of our attack,

while geographically dispersed activities in sparser street grids

yield better performance. We propose six countermeasures, that,

however, come with a usability trade-off, and responsibly disclosed

our findings and countermeasures to the major networks.
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1 INTRODUCTION
Fitness tracking social networks (FTSNs) consistently rank among

the most popular mobile apps and saw an additional surge in pop-

ularity during the COVID-19 pandemic [4, 51]. For example, one

of the largest networks, Strava, has over 100 million registered

users [52]. These fitness tracking social networks allow users to

record their sports activities, and share their tracks and achieve-

ments with friends and other users of the platform, promoting

enjoyment and motivation [7]. The tracks represent the routes that

the user followed during the activity. While sharing tracks forms

part of the attraction of these networks, this, however, comes with

privacy and security risks, as they might reveal sensitive informa-

tion, such as the user’s regular routes or visited locations, to people

with ill intentions. Several past incidents drew attention to the

dangers of sharing this data with the public, from revealing secret

military locations [25], enabling theft of exercise equipment [10],

revealing the identity of nearby athletes [47], to doxing users [39].

To limit the potential risks of sharing information, all major

networks offer privacy controls that limit the amount of shared

information, as well as control whom information is shared with.

One notable privacy control is the endpoint privacy zone (EPZ). An
EPZ allows users to hide track portions near protected (sensitive) lo-

cations, such as their home or work address, from all activity tracks

shown to other users. This measure aims to prevent harassment

and stalking at commonly visited locations [56], or criminal activity

such as theft at the protected locations [10]. Most commonly, EPZ

implementations balance an increase in privacy with usability, no-

tably in terms of tracking fitness achievements, as features such as

leaderboards may only be available for publicly viewable data [14].

Moreover, activities usually still contain the full traveled distance,

even for the portions hidden by the EPZ. The user who created the

activity can also still access the full activity, as shown in Figure 1.

One implementation of EPZs hides track portions inside a circle

with the sensitive location as its center and a user-configurable

radius. However, this implementation has fallen out of favor, as

given one or more tracks for one user, it is possible to reconstruct

the privacy zone (i.e., the radius) and find the sensitive location
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Figure 1: Example of an activity in Strava. The interface dis-
plays the track ➀, the total traveled distance ➁ and accumu-
lated distance at each point (through the elevation profile
➂). Part of the track is marked as ‘hidden’ ➃, as it is cloaked
by an EPZ. Only the owner of the activity sees that part of
the activity is hidden; other users only see the visible part
without any indication that another part is hidden.

(i.e., the center) through basic geometric inference. In 2018, Has-

san et al. showed that this EPZ implementation is vulnerable to

automated inference attacks [24]. In 2022, Mink et al. showed that

human users can visually infer privacy zones that use this imple-

mentation [35].

We confirm through a systematic analysis that major fitness

tracking social networks implemented some countermeasures in

an attempt to better protect sensitive locations from these basic

inference attacks [24, 35]. These countermeasures include those

proposed by Hassan et al. [24]: larger radii, noise addition at the

EPZ boundary, and spatial cloaking where the EPZ center is ran-

domly shifted. However, some usability trade-offs are made, such

as allowing small or only fixed radii, or not requiring spatial cloak-

ing. Moreover, some fitness tracking social networks still do not

implement EPZs at all.

In this paper, we are the first to show that these newer imple-

mentations of EPZs remain highly vulnerable to the discovery of

the purportedly protected location, even when countermeasures

such as spatial cloaking are applied. Our novel inference attack

leverages two inputs that enable a regression analysis resulting in

the protected location for an EPZ. First, the road network restricts

the possible paths that a user could have taken inside an EPZ. Sec-

ond, the activity metadata leaks the exact distances of the paths

that were traveled inside the EPZ. We then predict the protected

location as the point where the distances of the possible and actual

paths match best across multiple activities.

We find through an evaluation on 1.4 million real-world Strava

activities that our attack can deanonymize protected locations for

up to 85% of EPZs. Larger EPZ radii are more effective at preventing

location inference and preserving user privacy, but even for very

large radii (1 km), deanonymization remains possible for 55% of

EPZs. Through a detailed analysis of the sensitivity of our attack,

we find that higher geographic activity diversity and lower street

density benefit its performance.

We propose and evaluate six countermeasures that can restore

the anonymity of locations protected by EPZs to a varying degree.

We find that generalization (rounding) of reported activity distances

would be the most effective countermeasure, although it comes with

a significant negative usability impact, as fitness tracking social

networks are attractive precisely because they allow tracking small

achievement differences accurately. Other countermeasures may be

less invasive, but are then also less effective at improving privacy.

Interestingly, certain interventions such as regenerating EPZs may

actually improve our attack’s efficacy, as they provide more data

from which the protected location can be more reliably inferred.

Countermeasures must therefore be carefully evaluated in order

to minimize their negative impact on usability and privacy. We

disclosed our findings and proposed countermeasures to the major

vulnerable fitness tracking social networks.

In summary, we make the following contributions:

• We conduct a systematic analysis on current EPZ implemen-

tations for the most popular fitness tracking social networks.

• We develop a proof-of-concept attack that infers protected

locations inside EPZs through regression analysis on the

road network and leaked covered distances (Section 4).

• We evaluate our attack on 1.4 million real-world Strava ac-

tivities (Section 5). We discover sensitive locations for up to

85% of EPZs, and find that our attack performs better with

geographically dispersed activities on sparse street grids

(Section 6).

• We propose six countermeasures to improve the anonymity

provided by EPZs and discuss their trade-offs between pri-

vacy and usability (Section 7).

2 FITNESS TRACKING SOCIAL NETWORKS
Our work concerns fitness tracking social networks, where users can
record their workouts and share them with others. Users typically

record workouts using a GPS-enabled smartphone or wearable de-

vice and upload them in the form of activities. An activity contains

a track, i.e., the route that the user took, represented by a series

of points (coordinates). The activity also reports the total distance

traveled, as well as the accumulated distance at each point of the

track, along with other metadata such as the duration, pace, ele-

vation profile, heart rate, etc. Finally, many FTSNs define specific

stretches of road (e.g., ‘segments’ on Strava) where they maintain a

leaderboard of the fastest athletes across these stretches. Figure 1

shows what a fully developed activity may look like.

Most networks offer privacy controls that let users hide all activ-

ities from other users (i.e., private profile) or mark specific activities

as hidden. Using these controls can severely limit the functionality

of social features for the affected activities. For example, activities

that are marked as private by their owners cannot be viewed by

other users and may be ineligible for inclusion on segment leader-

boards and in challenges [7, 14]. However, networks such as Strava
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Table 1: Number of downloads from the Google Play Store
and EPZ features of popular fitness tracking social networks.

Application Downloads EPZ EPZ Radii (meter)

Adidas Runtastic [1] 50M+ ✗

Strava [50] 50M+ circular [200, . . . , 1600] incr 200

Garmin Connect [21] 10M+ circular [100,. . . , 1000] incr 100

Komoot [27] 10M+ polygon

Map My Run [55] 10M+ ✗

Nike Run Club [38] 10M+ ✗

Relive [42] 10M+ circular [200,. . . , 1000] incr 200

Ride With GPS [43] 1M+ circular [150, 300, 600, 1200]

Map My Tracks [31] 100k+ circular [500, 1000, 1500]

(a) Activity 𝑎 ({𝑝1, . . . , 𝑝𝑛 }), as visi-
ble to its owner.

(b) Activity 𝑎′ ({𝑝 𝑗 , . . . , 𝑝𝑚 }, 1 ≤
𝑗 ≤ 𝑚 ≤ 𝑛), as visible to other users.

1 j m n

0.16 km 0.20 km1.50 km

1.86 kmtotal_distance: 1.86, 
visible_distances:  
 [ 0.16, 0.18,  
   ..., 
   1.65, 1.66 ]

Inner distance scenario: 0.16 km + 1.50 km + 0.20 km = 1.86 km  
Total distance scenario: 0.36 km + 1.50 km = 1.86 km

Activity metadata Total activity distance

0.36 km

Cloaked distances Visible distance

Available distances:

1.66 km

Figure 2: Visibility of an activity to which an EPZ has been
applied. The EPZ is shown as a red circle.

mark activities as public by default [33] and the majority of users

keep this setting [22].

(Endpoint) Privacy Zones (EPZs) are a more functionality-friendly

privacy control and are supported by most networks. EPZs allow

users to hide the most sensitive parts of the tracks in their activities,

as they could otherwise reveal frequently visited locations such as

the user’s home or workplace. Activities with EPZs applied to them

can still be shared, but the hidden parts of the tracks may still be

ineligible for performance comparisons, so users may be inclined

to disable or at least severely limit them. We discuss these zones in

more detail in Section 3.

3 ENDPOINT PRIVACY ZONES
Most FTSNs allow their users to hide a privacy-sensitive location

by letting them define an Endpoint Privacy Zone (EPZ) around that

location. One location corresponds to exactly one EPZ, but a user

can configure multiple locations that each have their own EPZ.

EPZs can be regenerated at any time and are applied retroactively

to all the activities of the owner. The goal of the EPZ is then to hide

those parts of the track that might reveal the sensitive location, i.e.,

are near this location. Only the owner of the activity 𝑎 can view

the full track, including its actual start and finish points (together

the ‘endpoints’), as well as the layout of the EPZ itself (shown

in Figure 2a). Other users only see a cloaked activity 𝑎′ as defined
in Definition 1 and depicted in Figure 2b. Concretely, in such a

cloaked activity all points from the start of the track until the first

time the owner leaves the EPZ are hidden, as are all points from the

last time the owner enters the EPZ until the end of the track. The

other users therefore observe cloaked start and finish points. Note

that if the owner passes through the EPZ but does not start or end

there, that track portion through the EPZ is not hidden. Moreover,

even though the points inside the EPZ are hidden, the accumulated

distance for points outside the EPZ as well as the total distance

are not changed. This forms the basis for our attack described in

Section 4.

Definition 1 (Endpoint Privacy Zone). Let protected location 𝑝𝑠 =

(𝑥𝑠 , 𝑦𝑠 ) be a point in the Cartesian plane 𝐶 , and 𝑎 be an activity

route of 𝑛 points {𝑝1, . . . , 𝑝𝑛}. We denote 𝑝1 as the actual start point

and 𝑝𝑛 as the actual finish point.

Let 𝐸𝑃𝑍 be a subplane of 𝐶 . Enforcing 𝐸𝑃𝑍 on activity 𝑎 results

in a cloaked activity 𝑎′ = {𝑝 𝑗 , . . . , 𝑝𝑚} with 1 ≤ 𝑗 ≤ 𝑚 ≤ 𝑛, where

𝑝 𝑗 is the first point and 𝑝𝑚 the last point of the activity route that

does not lie in 𝐸𝑃𝑍 . We denote 𝑝 𝑗 as the cloaked start point and

𝑝𝑚 as the cloaked finish point.

In Table 1, we list the supported EPZ parameters of popular

FTSNs. Most FTSNs use circular EPZs and let the user select the

radius of the circle from a set of fixed radii. Hassan et al. inferred

protected locations using publicly available information such as

the advertised start and finish point of the user’s activity [24].

The researchers demonstrated that, given multiple endpoints of

protected activities and the circular layout of the EPZ, an adversary

could reconstruct the EPZ and expose the protected location (i.e.,

the center point of the EPZ). To deal with the aforementioned

attack, some FTSNs apply spatial cloaking by adding a random

translation to the center of the EPZs [23], resulting in a cloaked

circular EPZ as defined in Definition 2. An adversary could still

determine the parameters of the cloaked EPZ, but cannot infer the

protected location, since the protected location and the EPZ center

do not match. Komoot uses a randomly shaped polygon around

the protected location, rather than a circular EPZ. This makes it

more difficult for an attacker to deduce the shape of the privacy

zone [28]. Map My Tracks has an automatic privacy zone detection

tool, lowering the bar for users to create a privacy zone [37]. This

automatic tool scans all new activity endpoints in order to identify

regular start and finish locations. If such locations are detected, a

(circular) EPZ is enforced on all activities retroactively. This feature

is enabled by default but can be disabled by the user at any time.

Definition 2 (Cloaked Circular Endpoint Privacy Zone). Let 𝑐𝐸𝑃𝑍

be a circle with a center 𝑝𝑠𝑡𝑟𝑎𝑛𝑠 randomly translated from protected

location 𝑝𝑠 , and radius 𝑅. Enforcing 𝑐𝐸𝑃𝑍 on activity 𝑎 results in an

cloaked activity 𝑎′ = {𝑝 𝑗 , . . . , 𝑝𝑚} with 1 ≤ 𝑗 ≤ 𝑚 ≤ 𝑛, where 𝑝 𝑗
is the first point where dist(𝑝 𝑗 , 𝑝𝑠𝑡𝑟𝑎𝑛𝑠 ) > 𝑅, and 𝑝𝑚 the last point

where dist(𝑝𝑚, 𝑝𝑠𝑡𝑟𝑎𝑛𝑠 ) > 𝑅.
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Figure 3: The intuition behind our attack: we search the pro-
tected location (shown as a black marker) as the point where
the theoretical paths (based on reported distances, shown by
dashed lines) starting from the EPZ entry gates (in different
directions, shown by different colors) intersect.

4 BREAKING ENDPOINT PRIVACY ZONES
In this section, we present an attack against the current state-of-the-

art EPZs under a predefined threat model. Crucially, this attack is

enabled by the availability of exact accumulated and total distances

for cloaked activities, revealing the distance traveled inside the

EPZ. The intuition behind our attack is that if a victim has multiple

activities in one or more cardinal directions (which we denote as

‘entry gates’), we can use these distances to limit the locations

where the victim could have started or ended their activities. For

example, consider the three activities in Figure 3 indicated in blue,

orange and green. While only the owner of the activities can see

the dashed portions of the activities inside the EPZ, the attacker

still knows their lengths. With these lengths and given the street

grid, an adversary is able to construct all paths the victim could

have covered inside the EPZ. Given these paths, the endpoint of

the activities is at risk of being inferred using the intersection

of multiple distinct paths inside the EPZ. We divide the breaking

of privacy zones into two subproblems: first, identifying EPZs to

reduce the search space, and second, finding the protected location

inside those EPZs through regression analysis.

4.1 Threat Model
For this work, we consider an attacker who attempts to infer the

protected locations of another user by only using the publicly avail-

able information that a regular user would be entitled to view, as

displayed by the FTSN. The adversary has exactly the same rights

as a regular user and cannot access any information by any other

means, e.g., by infiltrating the FTSN’s servers. The attacker can

target either one specific user or the entire userbase of the network.

The attacker is reasonably technically sophisticated, capable of

inspecting network traffic to retrieve the activity metadata (e.g., in

browser developer tools), download map data and run the infer-

ence algorithm. This attacker model is similar to that of Hassan

et al. [24]. Mink et al. [35] consider a less technically skilled at-

tacker, who infers protected locations visually from the activity

view on the network’s website. In the context of intimate partner

violence, Tseng et al. [54] found evidence of forum discussions

where users collaborate on technically sophisticated attacks. Given

possibly similar motivations to deanonymize protected locations

(e.g., stalking), even less technically skilled attackers could receive

support in successfully deploying the inference attack.

4.2 Identifying EPZs
As a preliminary step for our attack, we seek to identify the EPZs of a

user. This step resembles the attack developed by Hassan et al. [24],

where identifying the EPZ (by fitting a circle) reveals the protected

location. However, this is no longer sufficient for our inference

attack, as networks use EPZs with countermeasures against Hassan

et al.’s attack. In our case, this step is also not strictly necessary

for our attack to be effective, as we can search candidate loca-

tions throughout the entire street grid regardless of the EPZ layout.

However, this step constrains the search space, which improves

the attack’s efficacy and computational performance by remov-

ing points that are ineligible as protected location. Moreover, if

one search space contains multiple non-overlapping EPZs
1
, our

regression-based approach for location discovery (see Algorithm 2)

may return a location outside these EPZs, i.e., in fact ineligible to be

a protected location. Some restriction is therefore advantageous, al-

though it does not need to be precise. Nevertheless, with knowledge

of how EPZs are configured on a specific platform (see Section 3),

the adversary can identify the distinct EPZs more precisely.

As an example of an EPZ identification algorithm, we present

Algorithm 1 that discovers circular EPZs. Such EPZs are used by

most services (Table 1). This algorithm identifies multiple circular

EPZs, each with different protected locations and parameters, from

the set 𝐴 of all cloaked activities of one user. The input to our

algorithm is the set 𝑃 of all start points 𝑝 𝑗 for cloaked activities

that started inside an EPZ and all finish points 𝑝𝑚 for activities that

ended in an EPZ, as they are shown to the adversary (a non-owner

user)
2
. We then adapt the 𝑘-means clustering algorithm [30] to

output the distinct circular EPZ layouts based on these start and

finish points, iteratively increasing 𝑘 until every EPZ is represented

by exactly one cluster. For a given 𝑘 , the algorithm initializes 𝑘

clusters 𝑆𝑖 (𝑖 = 1, . . . , 𝑘) with randomly selected points from 𝑃 . In

subsequent iterations, our algorithm assigns each point 𝑝 to the

cluster 𝑆𝑖 with the lowest Euclidean distance to the least squared

circle 𝐶𝑖 fitted between the points of that cluster, and fitted such

that none of the points lay inside𝐶𝑖 (a circular EPZ cloaks all points

within the circle, cf. Definition 2). This cost function differs from

regular k-means, where the distance from points to the mean of

their cluster is minimized. The radius of the fitted circle should be

bounded by the notion of the minimum and maximum radius of an

1
In case the EPZs overlap, we consider the union as one EPZ with multiple protected

locations. Bootstrapping the activities for the input to Algorithm 2 will then proba-

bilistically return these two locations (see also Section 6.2).

2
Note that we convert the geodetic coordinates (latitude and longitude) from the FTSN

activity data, to plane coordinates (Universal Transverse Mercator) by projecting them

onto a Cartesian plane, as established in Definition 1.
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Algorithm 1 cEPZ identification algorithm

Input:
𝑃 ⊲ Set of endpoints for cloaked activities

Output: 𝐶
1,...,𝑘 = 𝑐𝐸𝑃𝑍

1,...,𝑘 ⊲ 𝑘 cEPZs

1: procedure cEPZ identification(𝑃 )

2: 𝑘 ← 1

3: do
4: Initialize 𝑘 clusters 𝑆𝑖

3
at random (𝑖 = 1, . . . , 𝑘)

5: do
6: ⊲ Assignment step

7: for point 𝑝 in 𝑃 do
8: 𝑖 ← argmin𝑖 dist(𝑝,𝐶𝑖 )
9: 𝑆𝑖 = 𝑆𝑖 ∪ {𝑝}
10: end for
11: ⊲ Update step

12: for cluster 𝑆𝑖 in 𝑆 do
13: 𝐶𝑖 ← LSQ fit circle through {𝑝 |𝑝 ∈ 𝑆𝑖 }
14: end for
15: while ∃𝐶𝑖 : centroid change of 𝐶𝑖 > 𝜏𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑
16: 𝑘 ← 𝑘 + 1
17: while ∃𝑝 ∈ 𝑆𝑖 : dist(𝑝,𝐶𝑖 ) > 𝜏𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡
18: return 𝐶

1,...,𝑘

19: end procedure

EPZ implementation. This avoids too small clusters ‘overfitted’ on

too few points such that multiple circles actually are part of one

EPZ, and too large clusters due to outlier points.

Our algorithm repeats these assignments of points to clusters

and updates to fitted circles until the circles’ centroid changes be-

tween iterations are all lower than 𝜏𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 . This threshold should

be (empirically) selected such that clusters are sufficiently stable

while not indefinitely updating clusters. Moreover, k-means might

return a local instead of global minimum because of the random

assignment of points to clusters during the initialization phase.

In practice, our algorithm will therefore repeat the initialization,

assignment and update steps several times and use the clusters

with the lowest distortion, i.e., the global squared sum of distances

between points and the edge of their assigned fitted circle.

The algorithm finally checks whether all distinct EPZs have been

identified, or whethermultiple EPZs are still merged into one cluster.

It therefore tests whether the maximum distance of every point 𝑝 to

its assigned fitted circle (EPZ) is lower than 𝜏𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 . This threshold

could, for example, be the known maximum radius for the specific

EPZ implementation. If this is not yet the case, we assume there is

still a cluster containing multiple EPZs, and therefore increment 𝑘

to add a cluster and restart at the random assignments of points to

clusters. Once the condition on 𝜏𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 is also met, the algorithm

outputs the fitted circles 𝐶
1,...,𝑘 through the points of each cluster

𝑆𝑖 , which correspond to the 𝑘 𝑐𝐸𝑃𝑍s configured by the user.

4.3 Finding the Protected Location for an EPZ
The core of our attack consists of predicting protected locations

for each individual EPZ previously identified by the adversary. We

associate this EPZ with the subset of user activities 𝐴𝐸𝑃𝑍 that

3
with corresponding circles𝐶𝑖

Algorithm 2 Protected location prediction algorithm

Input:
𝐺𝐸𝑃𝑍 = (𝑉 , 𝐸) ⊲ Road graph inside EPZ

𝐴𝐸𝑃𝑍 = (𝑃,𝑂) ⊲ Endpoints and distances inside EPZ

Output: 𝑣𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ⊲ Predicted protected location

1: procedure predict protected locations(𝐴, 𝐺)

2: ⊲ Calculate theoretical distances

3: 𝐴′ ← ∅
4: for pair (𝑝𝑙 , 𝑜𝑙 ) in 𝐴 do
5: 𝑣𝑝𝑙 ← argmin𝑣∈𝑉 dist(𝑝𝑙 , 𝑣)
6: 𝑑𝑝𝑙 ← dist(𝑝𝑙 , 𝑣𝑝𝑙 )
7: if 𝑑𝑝𝑙 ≤ 𝜏𝑠𝑛𝑎𝑝 then
8: 𝐴′ ← 𝐴′ ∪ {(𝑣𝑝𝑙 , 𝑜𝑙 )}
9: end if
10: end for
11: 𝑇 ← |𝐴′ | × |𝑉 | matrix

12: for pair (𝑣𝑝𝑙 , 𝑜𝑙 ) in 𝐴′ do
13: 𝑇𝑣𝑝𝑙 ,∗ ← dijkstra_single_source_lengths(𝑣𝑝𝑙 ,𝐺)
14: end for
15: ⊲ Identify entry gates 𝑌

16: 𝑌 ← 𝐷𝐵𝑆𝐶𝐴𝑁 (𝐴′, 𝜖,𝑚𝑖𝑛𝑃𝑡𝑠)
17: ⊲ Remove deviating activities

18: 𝐴′′ ← ∅
19: for entry gate 𝑌𝑖 = (𝑃𝑖 ,𝑂𝑖 ) ⊆ 𝐴′ in 𝑌 do
20: 𝑌 ′

𝑖
← {(𝑣𝑝𝑙 , 𝑜𝑙 ) | (𝑣𝑝𝑙 , 𝑜𝑙 ) ∈ 𝑌𝑖 , 𝑜𝑙 ≤ max(𝑇𝑙,∗)}

21: 𝑌 ′′
𝑖
← {(𝑣 ′𝑝𝑙 , 𝑜

′
𝑙
) | (𝑣 ′𝑝𝑙 , 𝑜

′
𝑙
) ∈ 𝑌 ′

𝑖
, |𝑜′

𝑙
−𝑂 ′

𝑖
| ≤ 3𝜎𝑂 ′

𝑖
}

22: 𝐴′′ ← 𝐴′′ ∪ 𝑌 ′′
𝑖

23: end for
24: ⊲ Predict protected location

25: 𝑣𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 ← argmin𝑣𝑙 ∈𝑉
∑
(𝑣′′𝑝𝑙 ,𝑜

′′
𝑙
) ∈𝐴′′

���𝑜′′
𝑙
−𝑇𝑣′′𝑝𝑙 ,𝑣𝑙

���
26: return 𝑣𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑
27: end procedure

were cloaked using this EPZ (cf. Definition 1). We then retrieve

the road network graph 𝐺𝐸𝑃𝑍 inside the EPZ, defined as a set of

edges 𝐸 through nodes 𝑉 that represent all the possible protected

locations. This effectively constrains our search space to a finite

set of locations, and therefore reduces the identification of the

protected location inside an EPZ from a continuous to a discrete

problem. The correctness of our solution is therefore also limited by

the resolution of the graph𝐺 . This resolution can be improved using

chaining, i.e., adding equidistant, intermediate nodes at a certain

interval distance 𝑑𝑐ℎ𝑎𝑖𝑛 , e.g., selected to mimic GPS precision, on

edges longer than 𝑑𝑐ℎ𝑎𝑖𝑛 as depicted in Figure 4b.

We propose Algorithm 2 that predicts the most probable can-

didate based on two inputs. The first input is the previously con-

structed road graph𝐺 with nodes𝑉 and edges 𝐸. The second input

is the set of cloaked activities 𝐴𝐸𝑃𝑍 , as defined by a mapping from

the union of their cloaked start (𝑝 𝑗 ) and finish (𝑝𝑚) points 𝑃 , to the

reported distances 𝑂 between the actual and cloaked start points

(dist(𝑝1, 𝑝 𝑗 )) or the actual and cloaked finish points (dist(𝑝𝑚, 𝑝𝑛)),
respectively. These reported distances are available through the

activity data (e.g., elevation profile). In our inner distance scenario,
the distances for the start and finish point are available separately,

as the accumulated distance from the beginning at the cloaked start
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point and the remaining distance until the end from the cloaked

finish point respectively. We generalize this to a total distance sce-
nario in which only the combined cloaked distance is available,

i.e., without distinct distances for the start and finish point. If only

one of the points lies inside a privacy zone (as could be inferred

using Algorithm 1), the total distance trivially reduces to the inner

distance, as this inner distance at the single cloaked side is equal to

the reported distance discrepancy. Our data characteristics in Sec-

tion 5.2 show that 35.08% of activities only start or finish inside

an EPZ, but not both. When both endpoints are cloaked, there is

an unresolvable degree of freedom in the division of the distance

discrepancy over the start and finish points. In this case, the activ-

ity is discarded, and the attack is run on the remaining activities.

Our analysis in Section 6.3 shows that our attack still performs

well in this total distance scenario, with only a minor performance

reduction compared to the inner distance scenario.

In an ideal context, the endpoints for the reported distances of

all activities would overlap at exactly one node of the road graph

(i.e., the protected location) if the following idealistic assumptions

were to hold:

A1. The cloaked start and finish points intersect with the edge

of the EPZ.

A2. A protected location is always located along a path, i.e., on a

node inside 𝐺 .

A3. The victim starts and finishes their activity at the single

protected location inside a distinct EPZ.

A4. Inside the EPZ, the victim uses the shortest path on the street

grid from or to the protected location.

However, in practice these assumptions do not always hold. For

example, a user might only start recording their activity 50 meters

away from their protected location, and GPS tracking errors will

cause a track to deviate from (the shortest path on) the street grid.

Overall, for a 200m EPZ, 54% of all activities in our real-world

data set (Section 5) violate at least one idealistic assumption. Our

approach is explicitly designed to be robust against these violations,

i.e., it works even in non-ideal settings. We develop a four-step

algorithm that provides a sufficiently correct solution even though

these assumptions from the ideal context do not hold, as we show

in our real-world evaluation (Section 6).

4.3.1 Calculate Theoretical Distances. The algorithm starts by map

matching (‘snapping’) all endpoints to the road graph. For each

point 𝑝𝑙 ∈ 𝑃 , the algorithm identifies the node 𝑣𝑝𝑙 ∈𝑉 with the low-

est Euclidean distance 𝑑𝑝𝑙 to 𝑝𝑙 . If this distance exceeds a threshold

𝜏𝑠𝑛𝑎𝑝 , the algorithm discards this point since it is uncertain if the

road was used. 𝜏𝑠𝑛𝑎𝑝 could be empirically selected based on the

mean GPS sampling distance. 𝑃 ′ represents the set of map matched

points 𝑣𝑝𝑙 that are retained. The algorithm then computes the short-

est path lengths from 𝑣𝑝𝑙 (recall: a point near the edge of the EPZ)

to all other nodes𝑉 inside the EPZ using the Dijkstra single source

multiple destination algorithm [16]. The lengths are collected into

a distance matrix 𝑇 of size |𝑃 ′ | × |𝑉 |. These lengths represent the
‘theoretical’ distances from the cloaked map matched endpoints

at the edge of the EPZ to nodes within the EPZ (i.e., possible pro-

tected locations), if the track were to exactly follow the road graph.

However, GPS errors and the variation across the width of a road

cause the actual user tracks to deviate from this road graph. The

(a) Example road network graph𝐺 for
one EPZ.

(b) Road networkwith node resolution
increased through chaining.

Figure 4: The road network graph 𝐺 constrains the search
space for our location prediction algorithm. Each node 𝑣 ∈ 𝑉 ,
displayed in red, is a potential protected location.

(a) (b) (c)

Figure 5: Entry gates are identified as clusters of close end-
points. Endpoints will not exactly intersect the circular EPZ,
as the first (last) point outside the EPZ will be the first (last)
visible point. No endpoints therefore lie inside the EPZ.

regression analysis in the last step of our algorithm addresses these

deviations when predicting the protected location.

4.3.2 Identify Entry Gates. The exact intersection point of an activ-

ity and the EPZ is seldom recoverable, violatingAssumptionA1. Def-

inition 1 states that the activity gets cut off at the first point out-

side the EPZ rather than at the exact intersection. In combination

with low GPS sampling rates (to save battery) and GPS errors, this

cloaked endpoint can be distant from the edge of the EPZ, par-

ticularly as the speed of an activity increases. Figure 5 shows an

example of this scenario, where the endpoints of an activity do not

exactly intersect with the circular EPZ.

We cluster the cloaked endpoints 𝑝𝑙 to form dense regions. We

refer to these regions as entry gates, and we assume that each entry

gate 𝑌𝑗 consists of endpoints 𝑃𝑌𝑗
⊆ 𝑃 ′ where the intersection point

of the actual track with the edge of the EPZ is shared. In Figure 5,

the points that form one entry gate are displayed in the same color.

The most suitable algorithm for geospatial data is DBSCAN [19], a

density-based clustering algorithm, since it does not require a priori

knowledge of the number of clusters (i.e., entry gates). DBSCAN

requires two parameters: 𝜖 , the maximum distance between two

points of the cluster, and𝑚𝑖𝑛𝑃𝑡𝑠 the minimum number of points to

form a dense region. For example, 𝜖 could be determined as the 95th
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quantile of sample distances (i.e. distances between consecutive

activity points). We run DBSCAN on the points 𝑃 ′ to obtain all

entry gates 𝑌 , each defined by a subset 𝑃𝑌𝑗
⊆ 𝑃 ′ of the points

corresponding to that entry gate, disjoint with all other subsets.

4.3.3 Remove Deviating Activities. Next, we discard outlier end-

points that could incorrectly skew the prediction of the protected

location. Such outliers may stem from activities where the user

started or finished far away from the protected location (violating

Assumption A3), or did not follow the shortest path within the EPZ

(violating Assumption A4).

The algorithm starts by discarding points 𝑣𝑝𝑙 with a reported

distance 𝑜𝑙 larger than the maximum theoretical distance 𝑇𝑙,max

from 𝑣𝑝𝑙 to a node inside the EPZ, i.e., the maximum of the matrix

row 𝑇𝑙,∗. We do this because these activities could never cover the

shortest path towards the protected location. For each entry gate

𝑌𝑗 , our algorithm then discards outlier points where the reported

distance deviates significantly from the distance for other points

within the same entry gate. Concretely, we consider a deviation of

more than three standard deviations from the mean significant.

4.3.4 Predict Protected Location. As the points that constitute one
entry gate do not overlap exactly, we use least absolute deviation

(LAD) regression to predict the most likely protected location across

all these diffuse entry gates. For each node 𝑣𝑙 inside the EPZ (i.e.,

each possible protected location), the algorithm calculates the sum

of absolute differences across all points 𝑣𝑝𝑙 ∈ 𝑃 ′ between the ob-

served distance 𝑜𝑙 and the theoretical shortest path distance 𝑇𝑣𝑝𝑙 ,𝑣𝑙
between 𝑣𝑝𝑙 and 𝑣𝑙 . The final predicted protected location is then the

node 𝑣𝑙 ∈ 𝑉 where this sum is minimal. Note that we retain Assump-

tion A2 here, as the predicted location will always be located on the

road graph. However, users may start or finish their activity away

from the road, e.g., on their private grounds. We offset this violation

of our assumption through the definition of an error threshold 𝜏𝑒 ,

below which the protected location is sufficiently closely predicted

to deanonymize the user. In Appendix A, we empirically determine

an acceptable error threshold based on real-world activities.

5 DATA COLLECTION
A large pool of real user data from a fitness tracking social network

is required to further evaluate the plausibility of our attack against

state-of-the-art EPZ implementations. For this, we use Strava be-

cause it is one of the most popular fitness tracking social networks,

with over four billion total activities recorded so far [51]. In this sec-

tion, we explain the methodology we used to collect user data from

Strava and further analyze this data set to obtain useful insights

into the privacy habits of users and fitness trackers.

5.1 Methodology
The scope of our data collection is a period of one week starting

from 11 July 2021. By inspecting timestamps and elapsed time of ac-

tivities, we conclude that IDs of activities are assigned sequentially

rather than randomly upon uploading. However, due to delays in

uploading activities to Strava, the temporal order is not sequential.

We identify the first activity ID globally assigned after 11 July 2021

00:00 UTC. We then visit each next 9,000th public activity from

approximately 36 million activities uploaded during this week. If

Table 2: Empirically selected parameters for Algorithms 1
and 2, and the success rate metric, as used in our evaluation.

(a)Algorithm 1

Parameter Value

𝜏𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 10 m

𝜏𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 1600 m

(b)Algorithm 2

Param. Value

𝑑𝑐ℎ𝑎𝑖𝑛 3 m

𝜏𝑠𝑛𝑎𝑝 10 m

Param. Value

𝑚𝑖𝑛𝑃𝑡𝑠 1

𝜖 20 m

(c) Success rate

Param. Value

𝜏𝑒 22.95 m

this activity is not public, does not exist anymore, or was completed

before 11 July but only uploaded after, we consider the next se-

quential activity. For this (public) activity, we identify the user who

created it. This ultimately provides us with a randomly generated,

representative sample of 4,000 users.

For each user in our sample, we retrieve user information (i.e.,

nationality) and the IDs of their public activities with map data. For

this, we scrape and parse the overview section of the athlete’s profile

page
4
using Selenium [49]. Then, for each activity (ID), we extract

its total distance and type from the strava.com/activities/ID
page. We also collect the elevation profile including the GPS track

points as coordinate pairs with the corresponding elevation and

accumulated distance data from the strava.com/stream/ID API
endpoint. Since an authenticated user can make a maximum of 375

requests to Strava’s stream API per day, we use multiple accounts to

speed up the download process. Despite downloading with multiple

accounts to circumvent rate limiting, our data set took three months

to collect. Before storing our collected data in our database, we

pseudonymized the data by replacing original user IDs with an

autoincremented primary key upon request of our IRB. We repeat

the same procedure for activity IDs.

To obtain the road graph for each EPZ, we use the OSMnx frame-

work [8] to download the OpenStreetMap road network in a graph

format (see Figure 4a).

5.2 Data Characteristics
With the aforementioned methodology, we collected a data set of

1,404,886 activities created by 4,000 users. We plot several distribu-

tions within this data set in Appendix B. The distribution of number

of activities per user is shown in Figure 11, with a median of 136

activities per user. Our data set is geographically diverse as shown

in Figure 12, containing activity endpoints from 160 different coun-

tries. The data set provides different densities and layouts of road

networks, which is an important factor for the efficacy of our attack

as shown in Section 6.4.4.

We observe that 461 users (11.53% of our total data set) use at

least one EPZ to cloak activities. Figure 13 shows the distribution of

EPZ radii for these users, as determined through Algorithm 1 (with

parameters from Table 2a). Radii up to 400m have a 65.50% share,

indicating that smaller radii are more popular than larger ones.

35.08% of protected activities in our data have only one cloaked

endpoint, making them usable for the total distance scenario. We

observe non-fixed EPZ radii in our data set that have a statistically

insignificant distortion score and fit the endpoints well through

visual inspection. We assume that user-selected, non-fixed radii are

a legacy feature that is not available anymore.

4strava.com/athletes/ATHLETE_ID
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6 EVALUATION
6.1 Ground Truth Definition
To assess the effectiveness of our algorithm, we require a ground

truth of known protected locations that we can compare to the

predictions made by our algorithm. To do so, we use the 1,312,250

uncloaked
5
activities generated by the 4,000 users in our data set

(Section 5). For each user, we search their activities that are part of

clusters of at least 15 endpoints that fall within 50 meters of one

another. Since most fitness tracking social networks use an auto-

complete address form for the creation of privacy zones, we then

designate the streetside location of the closest address to these clus-

ter’s centroids as our ground-truth location 𝑣𝐺𝑇 ∈ 𝑉 (i.e., the point

that a user would configure as a protected location). We believe that

inferring likely protected locations from uncloaked activities is the

most feasible way to generate a sufficiently large-scale yet reliable

ground truth. We note that our approach to obtaining ground truth

is almost identical to that of the existing state of the art [24].

Using the aforementioned methodology, we constructed 4,689

ground-truth locations for 2,527 users (63.18 % of entire data set).

We were unable to construct at least one reliable ground-truth

location for the other 1,473 users due to a lack of geographically

concentrated, uncloaked activities of theWalk, Run or Ride type.

6.2 Prediction Evaluation
For each ground-truth location, we synthesize an EPZ, with its

center randomly translated from that location, for each radius in

the set of radii available in Strava. We consider this set of radii as

exemplar since Strava is one of the most popular FTSNs, and since

it supports the largest EPZ radii. In the case that multiple protected

locations of the same user are located inside the same EPZ, i.e.,

closer to each other than the EPZ radius (8% of 200m EPZs), we

only synthesize an EPZ around the protected location with the

most activity observations. We then simulate the cloaking of these

–previously uncloaked– activities by removing all points that fall

within the synthetic EPZ. Finally, we evaluate our attack by predict-

ing the corresponding protected location of each (synthesized) EPZ

using Algorithm 2 with the locally cloaked activity data as input.

We then compare this prediction (i.e., the result of our algorithm)

with the ground-truth location.

We measure the predictive error of Algorithm 2 by construct-

ing confidence intervals (CIs) using bootstrapping [18], a random

sampling method with replacement. We run our algorithm (using

the parameters in Table 2b) 1000 times with resampled data from

the observed activities 𝑎, retaining the original number of cloaked

activities for this EPZ. This yields 1000 (not necessarily distinct) pre-

dicted locations 𝑉𝑝𝑟𝑒𝑑 ⊆ 𝑉 , which we denote as the CI constructed

by bootstrapping. This finally allows us to estimate the probability

distribution 𝑃𝑟 (𝑣 |𝑎), i.e., protected locations 𝑣 ∈ 𝑉 given the user’s

activities 𝑎, with the probability quantified as the number of times

the location was predicted out of the 1000 runs of our algorithm.

Note that this probability is, therefore, zero for locations that were

never predicted, i.e., 𝑣𝑝 ∈ 𝑉𝑝𝑟𝑒𝑑 ⇔ 𝑃𝑟 (𝑣𝑝 |𝑎) > 0. We compute an

extended CI 𝑉𝑝𝑟𝑒𝑑,𝑒𝑥𝑡 ⊆ 𝑉 to account for the ‘overshoots’ caused

5
While FTSNs do not explicitly show that an EPZ is used, we infer whether an activity

is cloaked by checking if there is a discrepancy in the visible distance and total distance

of an activity.

by activities starting or finishing away from the road graph (Sec-

tion 4.3.4). This extended CI encompasses the nodes 𝑣𝑒 ∈ 𝑉 that

lie within the error threshold 𝜏𝑒 of the predicted locations 𝑉𝑝𝑟𝑒𝑑 ,

i.e., 𝑣𝑒 ∈ 𝑉𝑝𝑟𝑒𝑑,𝑒𝑥𝑡 ⇔ ∃𝑣𝑝 ∈ 𝑉𝑝𝑟𝑒𝑑 : dist(𝑣𝑒 , 𝑣𝑝 ) ≤ 𝜏𝑒 . We further

discuss the overshoots, and empirically determine 𝜏𝑒 in Appendix A.

We subject our predictions to the following privacy metrics,

which except for success rate, we compute separately for each EPZ:

Success rate [36] is defined as the percentage of EPZs for which

the attacker is ‘successful’ (binary value). An attacker is considered

succesful when the ground-truth location lays inside the extended

CI 𝑉𝑝𝑟𝑒𝑑,𝑒𝑥𝑡 or, in other words, the predicted protected location is

sufficiently close to the ground-truth location to deanonymize the

user.

𝑣𝐺𝑇
?∈ 𝑉𝑝𝑟𝑒𝑑,𝑒𝑥𝑡 (1)

Correctness [48] is quantified as the sum of Euclidean distances

between the true outcome (ground-truth location) 𝑣𝐺𝑇 and each

node 𝑣 ∈ 𝑉 , weighted by the probability distribution 𝑃𝑟 (𝑣 |𝑎) (non-
zero only if the location was predicted).∑︁

𝑣∈𝑉
𝑃𝑟 (𝑣 |𝑎) dist(𝑣, 𝑣𝐺𝑇 ) (2)

Accuracy [48] is quantified as the width of the confidence interval
constructed by bootstrapping (i.e., the number of unique predicted

locations 𝑣𝑝𝑟𝑒𝑑 ). Note that a higher value for accuracy reflects a

wider confidence interval, so the adversary is less confident of their

prediction, and privacy improves.

|𝑉𝑝𝑟𝑒𝑑 | (3)

Reduction of the𝑘-anonymity set refers to the𝑘-anonymity set [44,

45, 53] generated by an EPZ covering a ground-truth location, with

𝑘 the number of nodes of the chained road graph inside the EPZ (i.e.,

all possible protected locations). The reduction is then defined as

the proportion of 𝑘 minus the number of nodes inside the extended

CI, over 𝑘 .
𝑘 − |𝑉𝑝𝑟𝑒𝑑,𝑒𝑥𝑡 |

𝑘
(4)

Size of Uncertainty Region [13] is defined as the area of the union

of (possibly disjoint) circles around the predicted nodes in the

confidence interval with a radius equal to the chaining distance.

𝐴𝑟𝑒𝑎

( ⋃
𝑣𝑝 ∈𝑉𝑝𝑟𝑒𝑑

𝐶𝑣𝑝 ,𝑑𝑐ℎ𝑎𝑖𝑛

)
(5)

Certainty [48] is the Shannon entropy [46] of the estimate dis-

tribution 𝑃𝑟 (𝑣 |𝑎) and represents how concentrated the probability

distribution is, but lacks a notion of (spatial) neighborhoods. A

higher entropy value indicates a less certain adversary.

−
∑︁
𝑣∈𝑉

𝑃𝑟 (𝑣 |𝑎) log
(
𝑃𝑟 (𝑣 |𝑎)

)
(6)

Spatial Certainty is based onKarlstrom andCeccato’s entropy [26].

Instead of using the probability of a single node 𝑣 , we use the log-

arithm of the neighborhood probability 𝑃𝑟𝑛 (𝑣 |𝑎) as the surprisal
term of the entropy formula. Therefore, this represents how spa-
tially concentrated the distribution is. We refer the reader to Sec-

tion 11 for more details on this new metric.

−
∑︁
𝑣∈𝑉

𝑃𝑟 (𝑣 |𝑎) log
(
𝑃𝑟𝑛 (𝑣 |𝑎)

)
(7)
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Table 3: Susceptibility to our attack of popular FTSNs’ EPZ
implementations, for the two scenarios from Section 4.3.

Application Inner Total

Strava [50] ✓ ✓

Garmin Connect [21] ✗ ✓

Relive [42] ✗ ✗

Komoot [27] ✗ ✓

Map My Tracks [31] ✓ ✓

Ride With GPS [43] ✓ ✓

Degree of Anonymity [15] is the entropy of the estimate distri-

bution 𝑃𝑟 (𝑣 |𝑎), normalized by the maximum value entropy 𝐻0 (𝑉 )
when all nodes inside the EPZ are equally likely.

−∑𝑣∈𝑉 𝑃𝑟 (𝑣 |𝑎) log
2

(
𝑃𝑟 (𝑣 |𝑎)

)
𝐻0 (𝑉 )

(8)

6.3 Results
In this subsection, we present the results of our attack against actual

fitness tracking social networks. First, we analyze whether FTSNs

leak sufficient distance metadata through their APIs to enable our

attack. Table 3 shows that the EPZ implementations of 3 and 5

fitness tracking social networks are vulnerable to our attacks in an

inner and total distance scenario (Section 4.3), respectively. Relive

is the only network that is never vulnerable to our attack, since

it enforces EPZs by truncating activities to only the track outside

the EPZ when uploading. However, this truncation significantly

reduces usability (Section 7).

Next, we examine the efficacy of our attack with the privacy

metrics from Section 6.2 on the collected data set from Section 5

against all radii in the studied radii set. The results for the inner

distance and total distance scenario are shown in Tables 4 and 5

(Appendix C) respectively, and visualized altogether in Figure 6.

Note that, except for success rate, which is computed as a percentage

of binary success across all EPZs, we report the median across all

EPZs of the per-EPZ privacy metric values.

In the inner distance scenario, we achieve a success rate of up

to 85% for EPZs with a radius of 200 m, the most popular option

across Strava users (Figure 13). We notice a decrease in efficacy

of the attack as the EPZ radius increases, as depicted in Figure 6.

Nevertheless, even for the largest radius (1600 m), we still success-

fully deanonymize 39% of protected locations. We achieve almost

identical success rates for the total distance scenario.

For larger radii, the number of nodes inside the EPZ (i.e., the

candidate protected locations), as well as the number of nodes at

roughly the same distance from the entry gates of the EPZ increases.

This leads to more confusion between candidate locations in our

LAD regression from Section 4.3.4, since more candidate nodes

have similar distances. Increasing the radius, therefore, yields pre-

dictions with increased accuracy (i.e., larger confidence intervals),

which in turn, enlarges the uncertainty region from the adversary’s

perspective. Reduction of the 𝑘-anonymity set, on the other hand,

increases because the growth of the accuracy is smaller than the

growth of the number of candidate nodes. The median accuracy

amounts to 10 nodes for the inner distance scenario and a 200 m
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Figure 6: Privacy metrics from Section 6.2 for the predictions
resulting from our attack, representing the attack’s efficacy.

radius, resulting in a 92% reduction of the 𝑘-anonymity set and an

uncertainty area of 188𝑚2
. In the total distance scenario, we have

fewer ‘suitable’ activity endpoints compared to the inner distance

scenario: as mentioned in Section 4.3.3, we filter out the activity

endpoints where the user did not follow the shortest path. This

reduction in suitable endpoints negatively impacts the performance

of the attack, as we will discuss in Section 6.4. For smaller radii,

the total distance attack has a slightly higher accuracy, resulting

in smaller reduction and larger uncertainty areas compared to the

inner distance attack.

The confusion also negatively impacts the correctness of our

prediction, since the probability of predicting nodes other than

the ground truth increases. Moreover, the larger the radius, the

less probable it is that a user takes the shortest path inside the

EPZ, violating Assumption A4. To a lesser extent, the number of

activities our model can use for its prediction decreases as larger

radii are (nearly) enveloping entire activities. We achieve a median

correctness of 15m for the inner distance scenario and a 200 m

radius vs. 29m in the total distance scenario.

An adversary will have similar certainty for both distance scenar-

ios, steadily increasing with increasing radius (which also increases

the number of nodes), meaning that an attacker is less confident in

selecting one solution 𝑣𝑝 ∈ 𝑉𝑝𝑟𝑒𝑑 . However, using spatial certainty

as a metric, an attacker is more confident in (geographically) pin-

pointing one location in the inner distance scenario than the total

distance scenario. For the most popular radius, our attack achieves

a median spatial certainty of almost 0, meaning that we are able

to pinpoint a single location. Finally, the Degree of Anonymity

remains almost constant with increasing radius for both attack

scenarios, since the certainty of the attacker increases linearly with

the logarithm of the 𝑘-anonymity set size.
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Comparison With Prior Work. Our attack achieves a success rate

comparable to that of Hassan et al.’s main attack which uses circle

fitting [24]. Hassan et al. report a global 84% success rate, and while

their results are not fully broken down by radius, they report a 44%

success rate for 1 km radii. We achieve a success rate of up to 85%

(for 200 m radii) and a 55% success rate for 1 km radii. However,

our attack works for a harder-to-break EPZ implementation that

includes spatial cloaking, for which Hassan et al.’s main attack does

not work, and we use a lower error threshold (𝜏𝑒 = 22.95 m for

us vs. 50 m for Hassan et al.). In addition, Hassan et al. proposed

spatial cloaking as a countermeasure, and evaluated an alternative

interpolation attack on EPZs to which spatial cloaking has been

applied [24, Section 6.4]. Their attack relies only on route direction,

resulting in a success rate of at most 45% (for a radius of 200 m). Our

attack using regression across distancemetadata performs up to two

times better (for similar radii) than Hassan et al.’s alternative attack,

with our attack having up to 85% success, again at a stricter error

threshold. Therefore, we effectively circumvent the countermeasure

of Hassan et al. adopted by major FTSNs.

Mink et al. [35] found that human users can infer up to 68% of

all sensitive locations in their data set, but again for the original

EPZ implementation without spatial cloaking and with a laxer error

threshold. In comparison, our (automated) attack achieves a higher

success rate and works on EPZs with spatial cloaking by leveraging

topological information. While Mink et al. propose that humans

may also use topological information for visual inference, we con-

jecture that the need to visually trace the precise distances travelled

within the EPZ will make the visual inference task much less suc-

cessful at deanonymizing spatially cloaked protected locations than

our LAD regression.

6.4 Sensitivity Analysis
In order to better understand the conditions in which our attack

performs better or worse, and eventually develop more effective

countermeasures, we now analyze attack performance when differ-

ent factors are varied.

6.4.1 Suitable Activity Endpoints. We first analyze whether more

activities and endpoints lead to better performance. As the number

of activity endpoints (i.e., observations for LAD regression in Sec-

tion 4.3.4) increases, the variance of the difference between observed

and theoretical distances for our prediction will decrease. More ac-

tivities contribute to a slightly higher success rate for predictions,

independent of the EPZ radius, as Figure 7 indicates.

6.4.2 Entry Gates. An increased number of entry gates yields a

slightly higher success rate for smaller radii, as can be seen in Fig-

ure 7. The effect for larger radii is nullified by users not taking the

shortest path. In fact, the geographic distribution of entry gates

has a higher impact on the success rate of our predictions than the

number of entry gates.

6.4.3 Blind Spot Angle. We present the maximum blind spot angle
as a metric to measure this geographic distribution and define it as

the maximum angle between entry gates relative to the center of

the EPZ. Smaller blind spot angles provide more diversified obser-

vations for the LAD regression in Section 4.3.4 than observations

within one entry gate. These diverse observations increase the dif-

ference between theoretical shortest path distances and observed

distances of erroneous nodes, making it less likely that the LAD

regression selects the wrong locations. This explains the higher

success rate, as can be seen in Figure 7.

6.4.4 Density of Road Network. As the EPZ radius increases, we

observe an increasing negative effect of increased street density

(expressed as meters of road per square kilometer) on the success

rate of our predictions, as Figure 7 shows. As the density increases,

so does the number of nodes with the same distance from the entry

gates of the EPZ. This increased number of candidate nodes causes

confusion in the LAD regression, resulting in larger confidence

intervals and the prediction of incorrect nodes which, in turn, has

a negative influence on the success rate. Moreover, a denser road

network gives the user more routes to take that are not the shortest

path, again violating Assumption A4.

As one might expect for a distance-based attack, performance

primarily depends on geographic factors. Increased geographic

diversity in entry gates reduces confusion between candidate lo-

cations, particularly with sparser street grids and with smaller

maximum blind spots. An increased number of activities is, there-

fore, only useful for our predictions if they introduce additional

geographic disparity. Otherwise, their effect on the performance of

our attack is moderate.

7 COUNTERMEASURES
Our evaluation shows that identifying protected locations remains

feasible with current EPZ implementations. While other privacy

defenses exist, users tend to use these in combination with EPZs,

and users still find EPZs efficient [35]. In this section, we therefore

develop and evaluate potential countermeasures that support the

continued use of EPZs by making EPZs more resilient against our

attack. We evaluate our countermeasures on the inner distance

scenario of an EPZ with a radius of 400 meters. This inner dis-

tance scenario on a small radius is favorable from the adversary’s

viewpoint, yet accounts for the majority of EPZs in our data set as

discussed in Section 5.2. We also discuss the usability and privacy

implications and trade-offs of our countermeasures.

7.1 Distance-Focused Countermeasures
Our attack primarily relies on the availability of the distance cov-

ered within the EPZ. Countermeasures could seek to obfuscate

these distances, in order to increase the error in our regression.

This also has the effect of altering the total traveled distance.

C1 – Generalization. By reducing the precision of any reported

distance shown to a non-owner user [44, 45, 53], the adversary

would be unable to reliably determine the distance between the

actual and cloaked start/finish points (whether inner or total dis-

tances). This reduces the precision of the last step of Algorithm 2

(Section 4.3.4), in which we search the point where the theoretical

shortest path distances best correspond to the actually observed

distances. We implement generalization by rounding distances to

the nearest multiple of a certain integer value. In Figure 8, we eval-

uate the performance of our attack given different roundings of

the inner distance; note that the maximum perturbation is half of
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Figure 8: Impact of countermeasures C1-C36 on the privacy
metrics for our predictions and therefore on the efficacy of
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400 m radius. Full numerical results are presented in Table 6
(Appendix C).

the rounding distance. We find that the success rate fully breaks

down after a rounding of around 500 meters, although even small

roundings already largely reduce this success rate. Argyros et al. [6]

similarly found that attack performance is inversely proportional

to the magnitude of the applied rounding. As the rounding distance

increases, the uncertainty of the adversary (wrongly) decreases:

multiple observations get mapped onto the same generalized value

leading to less confusion in the last step of Algorithm 2. This makes

the adversary more certain of their false predictions.

C2 – Noisy distances. This countermeasure applies random noise

to the reported distance, instead of rounding it. This adds more

uncertainty to the predictions of the adversary, resulting in bigger

confidence intervals and uncertainty regions, as depicted in Figure 8.

6
Note that metrics for C2 and C3 strongly overlap.

However, multiple activities from the same entry gate would result

in these random shifts being averaged out, causing the ground truth

to be present in the confidence interval. With the ground truth still

present in the confidence interval, we observe no change in the

success rate.

C3 – Shifting distances. The reported endpoints are shifted by a

fixed or random distance, while retaining the originally traveled dis-

tance as the total distance. However, similar to the noisy distances

countermeasure, these random shifts may be averaged out across

activities. In Figure 8, we see an increased uncertainty region of

the adversary compared to the baseline. However, since the success

rate has not changed, 𝑘-anonymity has not been restored.

C4 – Truncation. A more invasive countermeasure consists of

eliminating the track portions lying within the EPZ entirely, by not

including them in the reported total and accumulated distances,

or even hiding the full track. This would effectively thwart our

attack, as we can no longer infer where on the street grid inside

the EPZ the activity may have started and ended; only a random

guess among all possible protected locations remains possible.

The main disadvantage of altering the reported distances lies in

their negative usability impact. Whereas in other location-based

services such as check-in apps, an error of several hundreds of

meters may be acceptable [6], this may be less the case for fitness

social networks. Part of the attraction of these networks comes

from the gamification of exercise activities [7], such as achieve-

ments for covering certain distance goals or being able to compare

across small performance differences (in the order of seconds) [14],

which require high detail in activity data. Aggressive rounding

of distances would result in losing the desired precision at which

the distance and pace are measured, possibly leading to overesti-

mated achievements. Removing the track portions inside the EPZ

and shortening the track distance is, therefore, also unattractive: it

would result in underestimating the achieved distance.

7.2 EPZ-Focused Countermeasures
Countermeasures could target the EPZ to decrease (the utility of)

available data or the identification of the EPZ (Algorithm 1).

C5 – Increasing EPZ radii. An obvious countermeasure is increas-

ing the EPZ radius. Our evaluation in Section 6.3 confirms that,

for circular EPZs, the attack performance decreases when the EPZ

radius increases. However, this severely reduces usability, particu-

larly for shorter activities, as they may be entirely covered by the
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EPZ. This might also be why larger EPZ radii are less popular than

smaller radii (as seen in our data set in Section 5.2).

C6 – Complex EPZs/cloaking. Beyond circular EPZs with a small

set of possible radii, different EPZ layouts could be implemented:

circles with any radius or even any shape. Hassan et al. [24] pro-

posed a similar strategy by hiding a (small) track portion of random
7

length beyond the EPZ border (“Fuzz EPZ Intersection Points”). Al-

ternatively, the concept of a ‘zone’ could be discarded, and instead

a fixed or variable distance from the start and finish points could

be cloaked, as Strava has recently implemented [32]. For our attack,

this only affects the phase of identifying EPZs, as this step will

be less reliable due to the noise applied to the cloaked endpoints.

Afterwards, the countermeasure has no effect on our location pre-

diction algorithm: the inner/total distances and endpoints remain

available, and allow for regression.

More complex zones require more complex identification algo-

rithms, beyond the least squares fit for circular EPZs (Algorithm 1).

These algorithms may be less accurate at identifying EPZs. More

complex zones may also make the removal of deviating activities

(Section 4.3.3) less effective, as the threshold for becoming an outlier

becomes less likely to be met. However, as stated in Section 4.2,

our attack still works with imprecise EPZ identification. Counter-

measures that make EPZ discovery harder, therefore, cannot fully

thwart our attack. Crucially, these countermeasures do not affect

the availability nor accuracy of the reported distances. Any increase

in the search space due to a less compact EPZ will reduce the attack

performance by increasing the likelihood that an erroneous loca-

tion is predicted, and it will make the attack more computationally

expensive.

Finally, a number of apparent countermeasures may seem effec-

tive at first, but can potentially improve the efficacy of our attack.

Regeneration of an EPZ recomputes the endpoints for every (future)

activity, and may, therefore, generate additional entry gates, as the

edge of the EPZ has now shifted. This yields additional and more

diverse data, which could improve the correctness of our attack,

since our evaluation in Section 6.4 shows that correctness tends

to decrease when there are more entry gates and activities. Next,

smoothing the track by map matching nodes to the road network

would remove any (small) deviations that cause the actual traveled

distance to not match the theoretical shortest path exactly, and

would, therefore, make the LAD regression step more accurate.

In summary, distance-based countermeasures and in particular

generalization are the most effective, but can severely reduce usabil-

ity. Countermeasures that target EPZ discovery are less invasive,

but only partially prevent our attack.

8 RELATEDWORK
Two recent works have analyzed vulnerabilities in previous imple-

mentations of EPZs where no spatial cloaking was applied and the

center of the EPZ was therefore the protected location. In 2018,

Hassan et al. [24] were able to infer EPZs and their protected loca-

tions by fitting circles between pairs of endpoints. They identified

84% of 432,022 athletes across 2.3 million EPZ-enabled Strava ac-

tivities. In 2022, Mink et al. [35] showed that users could visually

7
A fixed shift would be equivalent to increasing the EPZ radius.

identify up to 68% of protected locations when asked to draw the

EPZ between activity endpoints overlaid on a map and pinpoint the

protected location. Hassan et al. [24] proposed several countermea-

sures, which were implemented by some fitness tracking networks.

Crucially, both works therefore only prove the vulnerability of

an EPZ implementation that is by now arguably outdated. In con-

trast to both works, our attack breaks the current state-of-the-art

EPZs, i.e., those when spatial cloaking is present, with a comparable

or higher success rate than the prior work, on a harder-to-break

EPZ implementation. We also analyze in depth to which factors of

privacy zones our attack is sensitive.

Other work has explored other privacy concerns in sharing loca-

tion data on fitness tracking social networks. Beyond privacy zones,

Meteriz et al. [34] found that elevation profiles could be sufficient

to recover a location at borough- or city-level, even if the location

data is not shared. They require prior knowledge of potentially vis-

ited locations, which are predicted at very low granularity, unlike

our attack. Alqhatani and Lipfore [2], Zimmer et al. [58], Gabriele

and Chiasson [20], Couture [14], and Mink et al. [35] described

how users are somewhat aware of the privacy implications of shar-

ing location data on fitness tracking social networks, but that this

awareness may be insufficient. They also found that users differ

in their sensitivity to having sensitive locations publicly available,

correlating with concerns on personal space and physical safety.

Mink et al. [35] found that users consider EPZs an effective privacy

mechanism, but that these users would mostly use EPZs together

with other privacy mechanisms.

Beyond fitness services, prior work has evaluated the feasibility

of de-anonymizing implementations for location proximity, where

the distance to nearby users is shown instead of their actual location.

Li et al. [29] developed attacks for three popular location proximity

services, accurate to up to 25 meters. Argyros et al. [6, 40] showed

that major location proximity services remained vulnerable to lo-

cation inference attacks, despite existing countermeasures. These

attacks were sufficiently performant to enable real-time tracking.

These two studies proposed some form of spatial cloaking [23] as

an effective countermeasure. Qin et al. [41] and Zhao et al. [57]

showed for 4 and 29 apps respectively that revealed distances enable

trilateration attacks.

On the side of defenses, Gruteser and Grunwald [23] proposed

spatial and temporal cloaking, where an error is introduced to the

location information, e.g., by decreasing resolution or applying

random noise. Cheng et al. [13] evaluated the trade-off between

such cloaking and the quality of the provided service, and pro-

pose imprecise queries across cloaked locations to improve this

trade-off. Ardagna et al. [5] concretely defined obfuscation tech-

niques on circular zones (compare to circular EPZs). Duckham and

Kulik [17] formalized obfuscation as a means to achieve location

privacy, implemented through precision reduction (similar to cloak-

ing). Andrés et al. [3] formally introduced geo-indistinguishability,

where a user reveals a sufficiently approximate location to receive a

desired service, instead of their exact location. In this and follow-up

work [9, 11, 12], they proposed several techniques for achieving

this property.
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9 ETHICS AND RESPONSIBLE DISCLOSURE
We disclosed this research project to our university’s privacy and

ethics board before we collected any data or ran any experiments.

Our project was formally approved, and we implemented all rec-

ommendations regarding pseudonymization of user and activity

IDs, and data retention on secure internal network storage servers.

During the course of this project, we discovered several funda-

mental problems in how fitness tracking social networks implement

EPZs. We disclosed our findings to the affected parties from Table 3

by sending them a draft of this manuscript and by formulating

recommendations for improving the privacy of their users.

10 CONCLUSION
Major fitness tracking social networks have introduced endpoint

privacy zones as a tool to protect sensitive locations from being

revealed to malicious actors. However, despite the usage of spa-

tial cloaking, we show that these protected locations can still be

discovered reliably. Our attack leverages the reported distances

traveled within the EPZ, as well as the layout of the street grid

to deanonymize protected locations with a success rate of up to

85%. While distance-based countermeasures such as generalization

can be effective at thwarting our attack, they can also severely re-

duce usability. Networks must, therefore, carefully consider which

functionality they provide while guaranteeing user privacy.

11 ADDENDUM: SPATIAL CERTAINTY
We design a new metric to measure spatial certainty, which rep-

resents the geographical closeness of predictions. For example,

consider two situations (a) and (b), depicted in Figure 9, where an

attacker predicts four locations inside an EPZ with uniform proba-

bility. Whereas the predictions in (a) are geographically dispersed,

the predictions in (b) are geographically concentrated.

Shokri [48] defined certainty as the Shannon entropy [46] of

the estimate probability distribution 𝑃𝑟 (𝑣 |𝑎). This entropy shows

how concentrated 𝑃𝑟 (𝑣 |𝑎) is and, thus, how easy it is to pinpoint

a single outcome 𝑣𝑝 ∈ 𝑉𝑝𝑟𝑒𝑑 . Since this distribution 𝑃𝑟 (𝑣 |𝑎) is the

(a) Geographically dispersed predic-
tions of an adversary.
(certainty=1.39, spatial certainty=1.39)

(b) Geographically concentrated pre-
dictions of an adversary.
(certainty=1.39, spatial certainty=0.0)

Figure 9: Geographical plot of predictions of an adversary.
Each node 𝑣 ∈ 𝑉 , displayed in red, is a potential protected
location. Each actual predicted node 𝑣𝑝 ∈ 𝑉𝑝𝑟𝑒𝑑 is displayed
in blue.

same in (a) as in (b), it will result in the same value for certainty.

However, the certainty value does not give a notion of the spatial

concentration of predictions.

By increasing the chaining resolution (i.e., reducing the chaining

distance 𝑑𝑐ℎ𝑎𝑖𝑛 , as explained in Section 4.3), the number of possible

protected nodes 𝑣 ∈ 𝑉 increases. This will make it harder for an

attacker to pinpoint a single solution 𝑣𝑝 ∈ 𝑉𝑝𝑟𝑒𝑑 . However, we only
claim to predict a location with 𝜏𝑒 precision. Therefore, we should

consider neighborhoods of nodes within 𝜏𝑒 when determining if a

prediction is sufficiently close to the protected location.

We additionally define spatial certainty as Karlstrom and Cec-

cato’s entropy [26]. Instead of using the logarithm of the probability

of a single node 𝑣 as the surprisal term in the entropy formula, we

use the logarithm of the sum of all neighboring nodes 𝑣 𝑗 probabili-

ties of 𝑣 including 𝑣 itself:

−
∑︁
𝑣∈𝑉

𝑃𝑟 (𝑣 |𝑎) log
(
𝑃𝑟𝑛 (𝑣 |𝑎)

)
A node 𝑣 𝑗 is considered a neighbor of 𝑣 if the Euclidean distance

between both nodes is less than or equal to 𝜏𝑒 :

𝑃𝑟𝑛 (𝑣𝑖 |𝑎) =
∑︁
𝑣𝑗 ∈𝑉

𝑤𝑖 𝑗𝑃𝑟 (𝑣 𝑗 |𝑎)

with 𝑤𝑖 𝑗 =

{
1, if dist(𝑣𝑖 , 𝑣𝑝 ) ≤ 𝜏𝑒

0, otherwise
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A ABSOLUTE MAP MATCHING ERROR
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Figure 10: Distribution of the absolute map matching error
across our 1.4 million Strava activities. We select the elbow
point as our threshold for successful prediction.

A user may start and/or finish at a point away from the street

grid (e.g., on private property), meaning that the uncloaked end-

points may be far away from our streetside ground-truth location.

We, therefore, measure the absolute map matching error (i.e., the

distance between the ground truth and the centroid of uncloaked

endpoints that is used to construct the ground truth) and show

its distribution in Figure 10. This additional distance leads to less

precise predictions from our model, with the possibility of pre-

dicting ‘overshoot’ locations on the road network but away from

our ground truth. In order to cover these corner cases, we define

our prediction to be ‘successful’ (binary value) if the error of its

location to the ground truth is less than an error threshold 𝜏𝑒 . We

empirically select 𝜏𝑒 as the distance of the elbow point (22.95m) of

the absolute map matching error distribution. 92% of users in our

data set have a map matching error smaller than this distance.

B DATA SET CHARACTERISTICS
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Figure 11: Cumulative distribution of number of activities
per user over our data set of 4,000 Strava users.
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Figure 12: Geographic distribution of activity endpoints over
our data set of 4,000 Strava users.
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Figure 13: Distribution of selected EPZ radii across 461 Strava
users that use the EPZ cloaking mechanism.
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C FULL PRIVACY METRICS RESULTS
Table 4: Inner distance attack privacy metrics.

Success Rate (%) Correctness (m) Accuracy Reduction (%) Uncertainty Region (𝑚2
) Certainty Spatial Certainty Degree of Anonymity (%)

Radius (m)

200 85.55 15.79 10 92.21 188.97 1.51 0.04 22.96

400 77.26 27.11 14 96.67 267.75 1.78 0.24 22.79

600 69.09 45.09 19 97.86 361.25 2.02 0.48 23.49

800 61.89 67.83 23 98.43 448.34 2.18 0.61 23.76

1000 54.95 97.56 27 98.71 538.75 2.32 0.71 24.42

1200 49.44 125.49 30 98.88 621.66 2.39 0.84 24.49

1400 43.83 157.49 34 98.98 704.24 2.53 0.98 25.09

1600 39.58 196.03 37 99.12 786.48 2.62 1.06 25.36

Table 5: Total distance attack privacy metrics.

Success Rate (%) Correctness (m) Accuracy Reduction (%) Uncertainty Region (𝑚2
) Certainty Spatial Certainty Degree of Anonymity (%)

Radius (m)

200 84.36 29.10 15 87.40 318.03 1.91 0.59 29.06

400 75.23 60.49 20 94.12 448.42 2.18 1.02 27.82

600 66.65 96.64 25 96.27 573.95 2.38 1.20 27.69

800 60.30 137.31 28 97.30 635.30 2.46 1.38 26.81

1000 54.36 180.30 30 97.93 699.12 2.54 1.52 26.69

1200 48.20 221.07 31 98.33 744.40 2.57 1.63 26.19

1400 43.33 266.53 32 98.59 787.83 2.63 1.72 26.08

1600 39.31 319.41 33 98.81 788.23 2.62 1.77 25.39

Table 6: Countermeasure privacy metrics.

Success Rate (%) Correctness (m) Accuracy Reduction (%) Uncertainty Region (𝑚2
) Certainty Spatial Certainty Degree of Anonymity (%)

Defence

Baseline (no defense) 77.26 27.11 14 96.67 267.75 1.78 0.24 22.79

C1 - Generalization: 50 m 76.36 29.46 13 96.64 256.72 1.59 0.34 20.26

C1 - Generalization: 100 m 65.15 38.89 11 96.67 222.42 1.43 0.39 18.03

C1 - Generalization: 200 m 43.24 56.92 10 96.72 198.94 1.28 0.37 16.22

C1 - Generalization: 300 m 27.58 84.80 9 96.91 184.09 1.21 0.39 15.56

C1 - Generalization: 400 m 15.92 118.28 9 96.97 182.07 1.21 0.40 15.33

C1 - Generalization: 500 m 8.58 164.74 8 97.20 170.75 1.16 0.35 14.83

C1 - Generalization: 1000 m 3.04 290.38 6 97.95 133.72 1.03 0.42 12.73

C2 - Noisy distances: 50 m 78.09 31.66 22 96.05 411.56 2.26 0.39 29.07

C2 - Noisy distances: 100 m 78.05 40.77 32 94.90 638.75 2.65 0.69 34.23

C3 - Shifting distances: 50 m 78.13 31.21 22 96.02 417.88 2.28 0.40 29.26

C3 - Shifting distances: 100 m 77.75 41.15 33 94.90 637.14 2.66 0.69 34.12
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